773 research outputs found

    The Inductive Single-Electron Transistor (L-SET)

    Get PDF
    We demonstrate a sensitive method of charge detection based on radio-frequency readout of the Josephson inductance of a superconducting single-electron transistor. Charge sensitivity 1.4×104e/Hz1.4 \times 10^{-4}e/\sqrt{Hz}, limited by preamplifier, is achieved in an operation mode which takes advantage of the nonlinearity of the Josephson potential. Owing to reactive readout, our setup has more than two orders of magnitude lower dissipation than the existing method of radio-frequency electrometry. With an optimized sample, we expect uncoupled energy sensitivity below \hbar in the same experimental scheme.Comment: 10 page

    Quantum capacitive phase detector

    Get PDF
    We discuss how a single Cooper-pair transistor may be used to detect the superconducting phase difference by using the phase dependence of the input capacitance from gate to the ground. The proposed device has a low power dissipation because its operation is in principle free from quasiparticle generation. According to the sensitivity estimates the device may be used for efficient qubit readout in a galvanically isolated and symmetrized circuit.Comment: 5 pages, published for

    Dephasing of solid-state qubits at optimal points

    Full text link
    Motivated by recent experiments with Josephson-junction circuits, we analyze the influence of various noise sources on the dynamics of two-level systems at optimal operation points where the linear coupling to low-frequency fluctuations is suppressed. We study the decoherence due to nonlinear (quadratic) coupling, focusing on the experimentally relevant 1/f and Ohmic noise power spectra. For 1/f noise strong higher-order effects influence the evolution.Comment: minor corrections and clarification

    Superconducting proximity effect in a diffusive ferromagnet with spin-active interfaces

    Full text link
    We reconsider the problem of the superconducting proximity effect in a diffusive ferromagnet bounded by tunneling interfaces, using spin-dependent boundary conditions. This introduces for each interface a phase-shifting conductance Gphi which results from the spin dependence of the phase shifts acquired by the electrons upon scattering on the interface. We show that Gphi strongly affects the density of states and supercurrents predicted for superconducting/ferromagnetic hybrid circuits. We show the relevance of this effect by identifying clear signatures of Gphi in the data of T. Kontos et al [Phys. Rev. Lett. 86, 304 (2001), ibid. 89, 137007 (2002)].Comment: submitted to Phys. Rev. Let

    Spectroscopy and critical temperature of diffusive superconducting/ferromagnetic hybrid structures with spin-active interfaces

    Full text link
    The description of the proximity effect in superconducting/ferromagnetic heterostructures requires to use spin-dependent boundary conditions. Such boundary conditions must take into account the spin dependence of the phase shifts acquired by electrons upon scattering on the boundaries of ferromagnets. The present article shows that this property can strongly affect the critical temperature and the energy dependence of the density of states of diffusive heterostructures. These effects should allow a better caracterisation of diffusive superconductor/ferromagnet interfaces.Comment: 12 pages, 6 figures, to be published in Phys. Rev.

    Effect of Measurement on the Periodicity of the Coulomb Staircase of a Superconducting Box

    Full text link
    We report on the effect of the back-action of a Single Cooper Pair Transistor electrometer (E) on the measurement of charge on the island of a superconducting box (B). The charge is e-periodic in the gate bias of B when E is operated near voltages 2Delta/e or 4Delta/e. We show that this is due to quasiparticle poisoning of B at a rate proportional to the number of quasiparticle tunneling events in E per second. We are able to eliminate this back action and recover 2e charge periodicity using a new measurement method based on switching current modulation of E.Comment: 4 pages, 4 figures, revised versio

    Positive cross-correlations in a three-terminal quantum dot with ferromagnetic contacts

    Full text link
    We study current fluctuations in an interacting three-terminal quantum dot with ferromagnetic leads. For appropriately polarized contacts, the transport through the dot is governed by a novel dynamical spin blockade, i.e., a spin-dependent bunching of tunneling events not present in the paramagnetic case. This leads for instance to positive zero-frequency cross-correlations of the currents in the output leads even in the absence of spin accumulation on the dot. We include the influence of spin-flip scattering and identify favorable conditions for the experimental observation of this effect with respect to polarization of the contacts and tunneling rates.Comment: 4 pages, 4 figures, to appear in Phys. Rev. Let

    Manipulating the Quantum State of an Electrical Circuit

    Full text link
    We have designed and operated a superconducting tunnel junction circuit that behaves as a two-level atom: the ``quantronium''. An arbitrary evolution of its quantum state can be programmed with a series of microwave pulses, and a projective measurement of the state can be performed by a pulsed readout sub-circuit. The measured quality factor of quantum coherence Qphi=25000 is sufficiently high that a solid-state quantum processor based on this type of circuit can be envisioned.Comment: 4 figures include

    Effect of the attachment of ferromagnetic contacts on the conductivity and giant magnetoresistance of graphene nanoribbons

    Full text link
    Carbon-based nanostructures and graphene, in particular, evoke a lot of interest as new promising materials for nanoelectronics and spintronics. One of the most important issue in this context is the impact of external electrodes on electronic properties of graphene nanoribbons (GNR). The present theoretical method is based on the tight-binding model and a modified recursive procedure for Green's functions. The results show that within the ballistic transport regime, the so called end-contacted geometry (of minimal GNR/electrode interface area), is usually more advantageous for practical applications than its side-contacted counterpart (with a larger coverage area), as far as the electrical conductivity is concerned. As regards the giant magnetoresistance coefficient, however, the situation is exactly opposite, since spin- splitting effects are more pronounced in the lower conductive side-contacted setups.Comment: 8 pages, 4 figure

    Photon mediated interaction between distant quantum dot circuits

    Full text link
    Engineering the interaction between light and matter is an important goal in the emerging field of quantum opto-electronics. Thanks to the use of cavity quantum electrodynamics architectures, one can envision a fully hybrid multiplexing of quantum conductors. Here, we use such an architecture to couple two quantum dot circuits . Our quantum dots are separated by 200 times their own size, with no direct tunnel and electrostatic couplings between them. We demonstrate their interaction, mediated by the cavity photons. This could be used to scale up quantum bit architectures based on quantum dot circuits or simulate on-chip phonon-mediated interactions between strongly correlated electrons
    corecore